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A BSTRACT

In this  paper a hybrid Romes-dif ferent ia l  correction algori thm for cc~ ;~uti:;,~

best uniform rat onal approximants on a compact subset of the real line is

developed. Th is algorithm di f fers  from the classical mul ti Fle excha nge R~ ncs

algori thm ir~ two crucial aspects.  First of all , the solv ing of a nonlinear

system to f ind a best approxi mat ion on a g iven reference set in each iterat~~ :~

of the Renes alg~rithn is replaced with the d if f e rent ial correct ion a1gorit~~

to compute the d•~sired best approximation on the reference set . Secondly,

the exchange procedure itself has been modified to eliminate the pcssibi2.~ ty

of cycling that ~an occur in the usual exchange procedure . This second

modification is necessary to guarantee the convergence of this algorirh:r~ on

a finite set without the usual normal and sufficiently dense assumptior.n

that exist in other studies . 
— 
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1. Introduction

This paper is divided into two parts. In the first part we consider X a

compact subset of the real line with card(X ) > n + 2. Let CCX ) denote the

class of all continuous real valued functions defined on X , normed with the

uniform norm , i . e . ,  Il f U m a x { i f ( x ) 1  : x €~ X } . Let n be a posit ive integer

arid set

R~(X) {r 1/p : p c~ ~~ 
p(x) > 0  for all x c  X)

where ~~ denotes the set of all algebraic polynomials of degree < n .  Note

that R0(X) consists of only the positive elements of the set usually de n oted

by R (X). In tt~is setting we will give an algorithm for computing the best

approximation fcr positive f ~ C(X) from R~(X). We believe this algorithm is

the correct ana3 og, for this setting , of the standard multiple exchange Rem~ s

algorithm for polynomials. We observe here that if YC X, Y is compact and

card(Y) > n -r 2, then existence of a best approximant to positive f C c ( Y )

from R0(Y) is guaranteed by [5].

This algorithm contains some unique featur’~ including the incorporat”en

of the differeniia . correction algorithm [1], [L~] to obtain a best a;proxirn~~:ion

at each stage. This insures that the denominator of the best approximation ,

on the k
th reference set, X , will be positive on X . If, however , p..(x) <

k Ic K —

for some x C X we indicate two exchange procedures for selecting the ~:c xt

reference set. ~otc that in most studies thi.
; possibility is ignored by

assuming Cl) f is normal on some interval [a, hi containing X; (2) X is sufficicnt~~

• dense in [a, b]; and , ( 3 ) X
k 

is sufficiently close to an aiternatin~ ~~~ of the

best approximation to f on X. We shall also show th at  using our e: :chm ’, e p~ cc~~c~i~ .: ,

~~ there exists a > 0 such that for > k
0
, 
~k 

must be positive on X. From this

point on , ~ur e~.ch ar ~~c ~~~~~~~~ wili. coincide with t h e  s tandard  ~:u1 t ~~t~l. c-:~ch~~

proc€iure a:~ 1 wc can therefore ~~ i :~:,t~ c C~~~ .V’~~~~~ C~~i c c  w J out  the ~~~~~ ~~~~ tion 

~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~ ~~~
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Our procedure could also be used to overcome the difficulty which Dunham [31

has pointed out in William ’s paper on interpolating rationals [7].

It should be further emphasized that a modified exchange procedure i~

actually necessary to guarantee the convergence of this algorithm without

the assumptions (l)-(3) of above . Indeed , if one attempts to use the standard

exchange procedure without regard to the possibility that < 0 on X - nay

occur (and hoping that p
k

( x ) 0 for x C X — X
k 
does not occur to give a

divide fault) the usual proof that the error of approximation on the successive

reference sets is strictly increasing is false. In fact, examples exist for which

• the error does not increase strictly and for which the algorithm actually

• cycles (i.e., 
~k ~k+2 ~kt1 ~k+3 ~k~5 

...; X
k 

X
k~2 

=

X
k+l 

X
k+3 

X
k+5 

...; starting at some k). Using either of the

exchange procedures that we give, we are able to prove that the error of

approxinaticn or. successive reference sets is strictly increasing .

The second part of the paper is devoted to the descri pt ion of the Remes-

Difcor algoriths (the name of our algorithm) for obtaining the best approxination

to fC CCX ), X a finite subset of the real line of at least n + m + 2 points ,

by elements of R~ (X ) , m > 0, a > 0, where

R~ (X) = {r = p/q : p c 
~~ 

q E flu
, q(x)  > c for all x E

and the £ is chosen so that a best approximation from R~(X) will also be a best

approximation from the larger class that relaxes this requirement to q(x) > 0 cm

X. A proof of the convergence of this algorithm is given , along with a flow

chart. Finally,  a brief discussion of some numerical results will be given , A

complete discussion of the numerical results and comparison with both the Rcnes

algorithm and the differential correction algorithm is planned for in a seç~ r~ te

paper.

~~~~~~~ ~~~~ • • • • ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ —
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2. Approxinatir t ~~~R~ ( Y~~.

Let f C C(X ) R~ (X ) , with f > 0 on X. We first consider the case where

Xis a finite subset of the real line, with card CX ) > n  + 2. For each k ,

k = 1, 2, . . .,  C X shall denote a reference set of n + 2 or n + 3 points and

r
k 

11
~k 

~ R°(Xk
) will denote the best approximation to f on X5~ from R~

(X
k
).

This best approximation , r
k~ 

is obtained by using the differential carrccti n

algorithm applied to the point set X~. There are three advantages to f i n d i~.g

r
k 

via the differential correction algorithm rather than via solving a nor~lir:ear

system of equations : a solution is guaranteed , we are assured that > 0 cm

X
~
, and no extr2 complications will arise if X

k 
has n + 3 points . After computir~

r
k~ 

if X
k 

has n + 3 points we delete one point of to get a new set Y, of a + 2

points, taking care that f - r~ alternates on If X, ccnsists of n + 2

points, then we set = X,~. Set eSK max{lf(x) - rk ( x ) I  : xE 
~k~~’ ~

{x 
~~~. 

X: ~~(x) > 0) and consider the following two exchange procedures

for constructing the next reference set

Exchange I: (The positive exchange ) If rk is not the best approxi:na’tion to f

on from R0(Z~ ), ~~~ 
is constructed from 

~k
• by doing an ord inary Remes

multiple exchange on the points of Z~ . If rk is the best approximation to on

• from R0(7~ ) then the algorithm terminates if Zk = X. If ~ X then yE X

satisfying 
~~~~ 

min (pk(x) x C  x } is found and is defined to be

{y} U 
~~~ 

Note that in this case we have the < 0 and

consist~c of n + 3 distinct points of X.

Exchange II. (The r g ~ tive exchcnge) In thif; exchan ge procedure , the a l g o r i th m

Z first does a standard P cr ~:~ multiple exehanpe on the point set with rcsp~ct

to f — rk and ~k 
gettin~ Wk

C Zk~ 
where cer3i~ts of n + 2 point~ cr i  w h i c~

f - r~ aiterr ; ~tcs i:~ sign , j f ( w )  — rk
(w)

~ 
> for a l l  w t~ and

f(w) — r, (w)~ w C W I t:c~.~f j f(x) — r, ( x ) I  : x ~~ I . I f  W Y ~*n~k Ic

- - ~~~~~~~~~- - -  ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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= and = X then the algorithm terminates as r
k 

is the desired best

approximat ion to f on X. If this does not happen then Xkfl is defined to be

H Wk I) Cy} if Zk � X where y satisfies p~ Cy) min{pk(x) x E x }  < 0 and UK 
if

Z
Ic 

= X.

Note that this exchange procedure differs from the first one in that

whenever � X an additional point were takes on its minimum i~ added to

the reference set . In the first exchange procedure this additional po~rt s

added only when rIc is the best approximation to f on Zk from R°(Zk). Also ,

note -that whenever = X both of these procedures coincide with the standard

Remes multiple exchange procedure . For both o~ these exchange procedures thc

following theorem holds . (The set X1C X is chosen so that it has n + 2 points

and e
1

> 0.)

THEOREM 1. If X is finite and the algorithm described above using eithor of

the two exchange procedures is applied , then {ek} is strictly increacing .

Furthermore, the a1 ;ccrithrri eventually terminates at a best approximaiicr-i to  f

on X from R0( X ) .

Proof: To show that ek < ek+l 
for all k one must consider two cases. The

first is when Xk+l is constructed only from poThts of Zk. In this case p
~ cn~

~k+1 
are both positive on Xkfl 

and a standard de La Vallee Poussin type of

• argument (zero counting ) sho~s that ek < ek+l 
since 

~k+l 
is best on X,

1 
and

~ ~k+1~ 
In the case that Xk÷j = U {y } whore W

Ic ~k 
or W~ is the rcsiit.:f

a standard Penes rrnil~ iule exch enge on the points with respect to f - r
k 

and

and y € X satisfies 
~~~~ 

min (p
k
(x) : x C x) < 0, there are twe s cace c

be considorcd. The first when f(y) - rk+l
(y )

~ 
< ~~~ so that f - r,~~1

alternates on W, w i t h  eri’or Ck4l~ 
Since n , is also positive on WIc and

I f  - 
~k ’ 

> e
k 
on W

k 
we m;r~.t h~i ve that ek+l 

> m~~JIf (z) 
- r

k
(.
~
)I : z ( W~~ 

>

~ 

~~~~~~~~~~~~~~~~~~~~~~~~~~ ~r ::: :~~~~~-i 
- 
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by the san e de La Vallee Poussin t yr e  of argunent. Finully, if jf(y) -

= ek+l 
and f - rk÷l  al t er nates on Y

~~ i C. Xk÷l whe re Y~~ 1 ~ ~1~< ’ the n we mu~ t

have that next f(z) — rk÷ l (z)I a C W
1<) = °k+i~ 

Also , f — r~ alternates 1:.

sign on W
k 

with I~ 
- rk l > e

k 
on Wk

. Thus , by zero counting we must once a~ain

have that m a x ( I f ( z )  - r, (c)! : z C W } > I nin [If ( z )  - r ‘z)l : z E W } since
K K k

~ ~k+l. 
implying that ek 

< e
kfl

. (For a more careful treatment of the do La

Vallee Poussin tyse  of argument see the proof of Lemma 2 later in the pe;er .)

The rest of the theorem now follows since X is finite , and no reference set

can occur more th sm once .

• Although , in actual computation one only encounters finite sets , it is of

interest to consider the behavior of this algoi’ithm if X is only require-I

to be compact. In the remainder of this section we shall only consider Fx-~ ar~~e

I (the positive exchange). It can be shown that similar results are true for

Exchange II. We first note that in this case the set Cx€ X : >

may fail to he compact. If this happens then it nay not be possible to cor:y

out the Remes mul t ip l e  exchange on Zk w ith respect to f - rk and Y,. Thus , t h e

algorithm must be modified by choosing some c > 0 and settir~ = ~x C

The elements of the set Gk = (x ~ X : 
~~~~ 

< c j  will he called g-’ oies (F’-: •z~~:~ :~~d

poles) of The number c should be chosen so that 
~k 

has no g-Doles on X
k
.

Since

• 
X k 

< - r
k , I  Xk 

+ I’~ II < 2  II~ U X k 
< 2 HI,

it su ff ices to choose any c w i th 0 < e < 2 
~~~~ 

For such a choice of ~ ,

the a lgor i thm is defined as above wi th  ei ther of the two exchanges . We now

prove thu t this modified algorithm converges globally and at least l inearly .

TH C! }~~~ 2 .  For X a ccm~ act suh ~ et of [a , H,  and 0<c -~-~-~. an:~ f E C(X) -

the raticn ;, 1 f~~~I( i~~~~~~~~ ~~~~~~~~~~ ~y the mc if icd ;cr thm ~cc:i !.d ~~i:e ~~
- -. 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ,~~~~~~~~~~~~~
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no g-poles on X for K > some K0 end converge u n i f o r m l y  to the be ;t es~ roxi::.~ ti3 n

r~ to f on X accordi np to an i:1~~~1r e l i t y  of th•. ~orm Irk r :~~ ~ 
< Ae k , 0 ~ o ~

for k > K
0
.

Proof: Since th~ conciur on fellows t r iv i e~ J ’ , i f t he  algorithm ternir;~~ cc , we

assume that this is not the case. The method of proof is to sh ow that

is increasing aiv~ to a c t u a l ly  e s t i m a t e  this r~ te of increase , To p rove  t h a t

< e~~ 1 holds for all K , one s imp ly  uses th .: a rguments  of Theorem 1. Also ,

note that t e k }k is bounded (otherwise r 5 1 would he a better as~ roxic;atic n

than rk on Xk for some K ) .  Hence , there exists  ~~~ such that e~. + eC . The

remainder of this proof is broken into seven lemmas; the first of these , wh i c h

proves that the points in cannot cluster is proved by a r g u m e n t s  s im i T h r  to

Wendroff [6 , p. 65].

LEMMA 1. There exists ~ > 0 such that for every k, if tx~~, ...,

then x~ < x~~1 
- ~ for i = 0 , 1, ..., ii - 1.

Proof:  Suppose not , then there exist, for some fixed i, suLsec~uenc es (r elay ;i l c~

as) {x~} and {x~~ 1} such that x~ + x~ and x~~1 ~ x~ . By passing to fur the r

subsequences (re~ abc ii ing if necessary ) we haie that x~ x~ for j~~O ,...

as k + — ~~ where x :: = ~~ and x~ < x~ , j = 0, 1, .., a - 1. Thus , on the
i i+l j  j+ l

set X~ (xc:, ..., x~~1
) we can find p t’: 

~ 
sach tha t  f ( x ~ ) - = 0 , 

-

0, 1, . . . ,  n ~ 1. By continuity, there exists a ~ > 0 such that
e n+l

If (x )  — < for x C U (x~ ~ x~: + ~) Ii x where e2 > 0 , is

the error of the second cycle . Hence for sufficiently large K , we have t b t

~~~~ ~~~~ 
j 0, 1, ..., n t 1. But this implies thRt C , < sInce

is best on tx0, ..., x~ +1
} which contr adic ts  the f ac t  t h a t  e t .

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~
-
~~~: :~~~~~~~•~~~~ ~~1•111 1~~~ T~ , I~~~~~~ I T .
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LE~ MA 2. Let X he a compact set of real numbers containing at least m + n 1 2

points, and let f C C ) .  Suppose r~ = s— c- € R~ (X) has defect d = miri (m-~~~~, 
f l_ c~~ :)

and let N = m t a + 2 — d. Suppose that f - r~ alternates in sign on (x
1LL1 

c ~
where x

1 
< x

2 
< ... < x~ , and that f(x.) - r~ (x . )  � 0, for i = 1, . .. ,N. Then

if r = 
~~

- € R~ ( X ) , r ~ r~ on we have

max If(x.) — r(x.)j > mm f(x.) — r~~x .)I.l<i<N 1 1 1<i<N 1 1

Proof: Suppose max !f(x .) - r(x.)I < mm jf(x.) - r~x . ) I . Let
1 

~~ l< i<N 1 1

~(x) r(x) — r~
(x ) = ( f (x )  — r~ ( x ) )  — ( f ( x )  — r(x ) ) , for all x ~li X. Assunc-

(without loss of generality)  tha t f (x
1

) - r~ (::,) > 0; then we have (-l)
1A ( x~ ) < C ,

• i = 1, ..., N. Now for all x E X,

~(x )  = 
p (x )  

— ~~(x) = 
D(x)r•~ (x) — p~~( x ) a ( x )  

= 
S(x)

• q( x)  q~ (x )  q (x ) q ~ (x )  — q(x)q~(x)

so tha t (-l) 1S(x 1) < 0, i = 1, ..., N. But 3S < n + a - d = N - 2 so S 0.

Ther efore r S r~ on X and this contradic tion  i)rovus the lemma .

LEM MA 3. There cxists a constant c such that for every K , if

= p~~ + p~ x + ~k~n then l~~I < c for i 0 , 1, ..., n.

Proof: Suppose not. Let ~~~~
- = for all K where II~~U 

~ 
1 and ~~. > 0.

Let I [a, b] be a closed interval with a < min (x: x ~~. X} - 6 and

b > naxtx : x € X} + 6 whore 6 is the 6 of Lemm a 1. Note that c < 2 I~ H
for all k. Now , if there exists r~ > 0 such that C

Ic 
> y

~ for all K then th--
Y

desired result follows . Thus, let us assume that there exists a suh s c s u e n cr

(which we relabel) for which C
k 

-~~ 0, ~~ 
S un i fo rmly  on I wi th = 1.

r~ t z1, ..., z~ be the distinct zeros of q in I , and choose non-i n ‘ c c ~~in~

lutervuls l
~ 

- 6i’ ~~ 
+ 
~l~ ’ 

. . , I (z~ — + 6
1
)

P
4 

T.~~~ ~~j
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L

with 0 < < ~ -. Let J = I — 

~~ 
L and let 62 fh~~{!~ ( x ) I :  x C J) > 0.

2
62 1

Choose K so large that ~~(x)I 
> -

~~
-- for all x c J and c K <~~ 62

n where

m min{f(x): x C x }. By Iem r~a 1, no two points in ~k 
lie in th e sane . ;

furthermore , for all x ~ J , we have

i 
- C~~

< 1 2
I——I = 

~
— —--

~ 
< —6 m S —

q~(x) — 2 2 6
2

N ow 1et x~~ 1, x~ and x~~ 1 be consecutive po ints of and suppose th a t

f (x ~ ) — = e . Then x~ must lie in some I .  (since = f (x ~ ) -
~
-

( K \ K 3 1 ( K \ Jp ~x._1 i 
k k Pk~

x .J
which is separated from both x5 1  and x~~ 1 by points of J.

Since I ~ ) I < 
1 at such separ ation points , if p > 0 throughout

~k 
X k

[x~~1, x~÷1
], then 

~k 
must have a relative minimum somewhere in (x~~1 , x~~1

).

If , on the other hand , p
k

(x )  < 0 for some x € {x~~1, x~~1] then , since

> 0 and p
k

(x
~+j

) > 0 , it again follows that p, has a relative nimi:..~ r

somewhere in (x~ ,x1
~ ,).3-1 

~~~~~~~

Next, assume x~ , and x~ are ccnsecutive Doints ot Y with —
- J — ~ 3 j +1 - k (x m )

~k 
j-l

- f (x ~~1) = e
k
; then f (x ~~1) + e

k 
> m implying that x~~ , ~ I. for

some i , and sim il arly for ~~~~ By Lemma 1, x~~1 
and x

~÷1 
are in d is t inct  l .~~u .

If p. 0 thrcu~heut oithcr [x~~1, x~] or [x~ , x~~1], the n for some polo: x in

1. 1 1 1one of thec~ l ot cr’:als we have 0 < — - ——— —  arid 0 < •p x )  K p~~x) K
vi K 

~k~
’j-i~ 

k

k k K • Ksince there are - into of J between x. and x . and a~s c’ between x. css• j 1  3 3 J +r •

:~~~~ - I ~~~~ ~~~1I:~~
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Therefore , p, nest Love a relat -;e maximum whore in (x~ , ~~~~~ ) . 1:, on
J--l 3 - ~

the other L c d , p - ~ 0 sorewhcie i:i both [x~ , x~] ~nd [x~ , x~ 3 ,  t hen •
> 0  it ag~iln follows tha t  

~ k has a re1a~ lye -: ir: um somL-wh~•r-e in

(x .
1, 

x .
1
).

We have now shown that 
~k 

has a relative minimum between every :air of

“lower e x tr c r e~” of f - -
~~~~ (on Y .) and a relat ive maximum b e t w e e n  every sair

• 
p. K -

of “upper cx t r en s” . Thus , has at least n re la t ive  extreme . But is a

non-t r iv ia l  polynomial  of degree < n .  This con t rad ic t ion  co: :pthtes the  :roc f

of the lemma .

Coro ll ary . There  exists a constant c~ > 0 such that  Ip k
(x )  I < o~ for

k = 1, 2, . ..  and all x C X.

• Before proceeding to Lemma 14 , we introduce some new notation and maKe a

few remarks. We shall call the exchange from to X
kfl 

an augmented exehe

• if X = Y. U {y} (recall that Y C X is a set of n + 2 points on which f -

kfl K 1’- 1<

alternates wi th err or ~~~). Also , in this case the point y € X sat isfies

x ~ X} 
< c. Writing Xk+l 

= {y~~, ..., we have tha:

Xk+l conta ins exactly one g-poie of r
k
. Call this point ., . As stated earl ~or ,

we let r
k+l 

denote tOe best approximation to f from R~ (X ~~~1
) on X K +l 

(found V 1I

the differential correction aigorithn ) and we ~efine 
~k1l 

tc) be that subset ~f

on whi ch f — r
k~l 

alternates in sign with modulus °k!l~ 
Note that since

we are assur i ng that wc arc- us ing Exchange I, 
~k+i 

is uniquely c~etcrmincd Ly

the fact that 
~ +1 

and at precisely one poin t of 
~k ’ say t, I f ( t )  - r,~~1 (t)I 

-- -
~~

must hold. This follows from Ler: a 2. For e
k ~ 

A 
~ 

c-ktl 
construct r~ 4—

by re.hu -Li: ~ that

f (y~ ) — “A~~i~ 
— n 1

X , i P , 1, ...• ,I.

~ 

~~~~~~~~~~~~~ 
:~~~~~~~~~~~~~~~~~~~~ •~~~~~~~ • I
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whe r e Xk+l = 1
k~ l 

- - { ..., ~~~) and = sgn [f (~~~) - rkt l (y i )] .

Observe t ha t  for = -1, f (y ~~ - T 1.A f (y ~~) + A > 0 and for = +1 ,

f(~~ ) - ~ .A f ( ~~~) - A > f(~~~) - e~ 1 = rk+l
(y
I)> ~~ : > ~~ Thes , ~~~ is

defined by these equations and for all x C X , pA (x) is a continuous fu or  t i c : .  at

Finally , let A = inf{ h f  — rh  : r 
~ R~(X)}. Note that A > 0 since f c c  C(~~)

• - R
0

( X ) .  Then ,

LEMMA 14. If at the k-th exchange an augmented exchange occurs and

sgn[f(9~~
) - rk(y

~~
)] sgn[f(~~~) 

- rk l (~~~
) ] ,  I = 0, 1, ..., n, then

eK+l - ek > c2( II~ II - A ) ,  where ~2 is a constant  independent of K.

Proof : First observe that if A = ek, then r rk as these two func tions

take on the same values on (n + 1 points)  and likewise ek÷l 
rk+l .

Thus, ~ (y~ ) < € since y~ is a g-ooie of r..ek 1 
K

We now clairr that if < v~ < then we must have tha t
1 ~

-
O i+1

-k -k ~ksgn [f(y~~) — 

~ki-l~~~~~ 
= sgn [f (y .  ~~ - rk l(y- +J] 

= 1

since otherwise  (~~. a . ,  = —1 ) a zero counting argunent implies that rk

• • • -k -k -k -k ~k -1<Similarly , if y
0 

< y0 or y~ < y
0
, we must have sgn[f (y 0

) - rk÷l (y
O

)]  = 1 or

sgn[f(~~~) - rk~ l
(
~~~

)] 1, respectively . This follows by count ing  zeros of

- 

~k 
in the contrary case and using the fac t tha t ek < 

°kFl Indeed ,

suppos€ 
~~ 

and sgn[f(~~~
) - r ,

1
(~~~)] -J . Now we have that aiterr~~te,;

on y
~
, . . .,  y~~, y~ with error e

k+l 
and r

k 
alternates en y

0 , 
~
,‘

‘ with erm or

e
k 

and the sane si gn as that of f - rk l . Thus , DK+l 
- 

~~k 
has n zeros in

[~~~, 
~~~~ Also , we mus t have r k~~1

(~~~
) > r~ (~~~) sin ce we are assu m ing th~ t

sgn[f (~~~) - r.
1
(~~~)] -l an~ < e~~~1

. Thus, A] r i  ,

rk+l is the best in~- . -:~ m at ~ 1 j A  t o  f en we- mu st  heee 
~~~~

(-
~~

) > ~~• ~~~~~~

~~~~~~~~~~~ ~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ T:1LiTTT~~
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by construction , y
~ 

we.; chosen so that •(y~~) ~ c. Thus , p.
1 

— n Las

(at leas t)  one a id i t i onal  nero in (J ~~ , y~~) i:’~~ly ir g  m ,~~, a p which is a

• contradiction . A similar argac ent will treat the other cases. Tho: , it

follows from thL alternation of f - rkfl that sgn[f(y~
) - r

f1
(y k,] _l.

Consider for e~ < A < e7~1
. We know that 

~e 
(y~~ =

Set m = min{f(x): x C X} and ~ = mux (f(x): x C X}. Since hI~ b ! 
-

> 2A >

we have (as c 
-
~~

- 2 h f  II ~

e~~~
(y
~
) = (f(y~ ) + ek÷l

)
~~

> ( f (y~) + ek+l + ~ hif II - A ) ) 1

• > ( f (y k) + e
k+l 

+ ( h i f hi - e,
÷1
)Y1

>

Therefore , ~~ (~ k ) < ( f ( ~~~) + e~~1 + ( I f il - A)) l <p
÷1

(y~~) .  Si~~ee ~~~, i~

continuous f u n c t ion  of A , e, < A < e , there exist:; ~i such t h a t  c-. < u
K — — k+j .

and

( f ( y ~~) 
~~~~ 

+ hI~ i h - A ) ) 1
.

We de f ~ r c o L f f t c r - t s  far j 0, 1, ..., n by setting

n
=

and let ~~~ j , l x i , ..., x [
n ) Then ,

- A (ek~ l 
+ 

~~~y~~
) + ( i f  II - A)) - ~

i i 
= ~~~~~~~~ 

-

~~~~~~~~~ 
p (y 

~~~~~ r 

(y~~)

~ c
2
~~~ k÷l~~~

4

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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n
1 v kj•

C .  C .  Y 1
c j=O J ,ek+l ),W 0

+ 1)
max c. - C~— O<j<o Je k ÷1 J,w

M~ (ri + 1)
= C. - C .2 j,ek+l J , w

We complete the proof of Lemma 14 by showing that I~ II - A < c
~
’(e

kfl 
- e

k
) ,

where ~~‘ is a constant independent of k .  Now let

—k .-k 2 — k n1 y
0 

(y
0

) . . .  (y
0
)

D(y~) det :
.k k~2 ~k n

1 y (y
~~ ... (ia)

• and let D(y~ , A )  be D(y~) with the ~-th column replaced with

- 

( ( fG
~~~

) - ~0
A )~~ , . . .,  ( f ( ) -

Also, let W~ be the cofactor of D(y~ , A ) relative to the (I , j )  e emc-nt.

using Cramer ’s rule

h i f hi - A 
~~~~~~~ iCD(y~ , ek+l

) - f l (y~~, w ) ] I
£ I D ( y

0
) I

— M~(n + 1) 
~‘ •~ 

1 
- 

1

c lD(y5)i i 0  f(y.’) - 
~~°k÷~ 

±(~~ ) —

Mw (n + 1) v 1
< L W. [ m~x —

• - 3 (
— 

~ I D ( Y
0

) h  i 0  ~ 0<i<n 
11(y ) — fl.ek+l l 

~~~~~ 
— fl1u1

Now, since the points y~ are separated (Lemma I), there exists a constant

( in i - l e e : d e - n t  of K) such that the Vandermondc- deveru~nant lD (y~)i > > 0.

Furth~ :s. ore , 
~~~~ 

< K for sonic posi t ive constart < since all cofeci~ me C

D (y ~~) are ~n snd- : I ( i r d :  ;n -h ~r;t of K). Finally ,

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ :~~~~~~~~~~~~:T : I~i~~~
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• — k 1 1 1f (y 1
) - r

~
ek÷ l = 

- -k -k ?~ c-
Pe (Y i

) 
~k+l~ ”i)

-k
by the corollary  fo~~1 c w 1 .rg Lc:::n~ 3. Further-more , ~f (y 1) — r~~w~ =

• . • -k - i p (y.~)and by con st ru e t; sri tom Ices betwr en f (y 1) Ofle  , so that W

~ 
(y
~)k 1 e 1

lf(~1
) - 

~~~~~ 

> mmn(m , —. ) .  k+1

Thus,

max 1 
< e~max(e~ , 

1) .
O < i <n  jf(~~~) 

- nl
ek÷l I I~

(9
~
) - in

Therefore, ~[~ E I - A < c2’(e
k+l 

- w). Taking ~2 = ~~~~
- yields

“( ~l f hi - A) 
•~ • 

ek+l 
— w 

•~~• 
ek+l 

- ek.

• Now let us assume ther-e exists a suimsequence of positive integers

{k }
1 ; 1  satisfying the following :

1. An augmented exchange occurs between X and Xk k + iin 11~

2. e
k ~~1 — ek 

< ~( If II - 
~2) (since e

k 
k e~ < A , where A is t he

error of best approximation to f fron~~~ ( X ) ) .

By our assurhtion 2, we see that the sign condition of Lemma 4 cannot hold ,

hence we have for each the addit ional  condition :

k km k~ K,1
3. sgnCf(~ 1~~) — r k ~~~~ )] � sgri[f(~~~

1 ) — r
k
(y. )] for some i , 0 1 ‘ n.

Recall that for an augmented exchange between <
k 

and that

the subset of X, cc n si : t i nc i  cf n + 2 sain ts  on ~ h i ch  f - r a]tcmn~ tcs
x + l  k+1
m Tn

with error rs
+i . Define ~~ . (~. m } 

~k 
— Th a t  is , is t:~~

c~ Y. ;4 ; e u  is d-~~etc -d in f:,t;’i h; Y • Since-  we ar e
0 - k +~m

-.4

- 
~~~ ~~~~~~~~ 

‘~~~‘i~
- 
~‘-r- i~~i~:- -

~~~~~~ ~~j~~~
— 

~~~~~
— -

~~~~~
—----- -. - -

~~~



Exchange procedure I, we have that W
k 

may be taken to be 
~k 

whenever an
in m

augmented exchange is performed. Under these ansumptions we prove the

following two lemmas .

LEMMA 5. If 
~
ek~~

’
~~ 

(1 ) , then e
k+l 

- ek 
> ~2” where ~~“ is a constant

- 

• independent of k.

Proof: Once again , define = 4- , ek < A < e
k+l 

by

- -k -K -l
= ( f (y~) — r

~
ek) , 0 < i < n

with r~ sgn[f(~~
) - rk÷l

(y
1)],  0 < I < n. Since we are no longer assuming

that sgn[f(~~~) - rk
(
~~

)J  = sgn [f(~~~) - r
k÷l

(y
~
)J for all i , we do not necessarily

• have that p 
~k 

However, we still have that ~ 
~k 

as before so that

Pe Y~ 
> holds. Since ek~~~ 

<

e

~:l~ 
c) by hypothesis we have ,

- by the Intermediate Value Theorem, that there exists u, ek < ~~ < ek+l,  such that

- K c -~~

- (1 + ) . Then, as be ore

- k - k
- -l + c 1 1 1 

- 

Pek+l~
Y
~~ 

-

F °  c c — -  k -  k — k -  k
~ ~~~~ ~e 

(y
~~) P ~~~~ 

(y
e

)
ki-l k+1

n
l + c  r

t. 2 L (c. e 
— c . )(y

~)£ j=O ~~~‘ k+ 1 ~~~‘

I

• where the coefficients c. and c. are as defined in the proof of Lemm a 4 .

Since the estimates used in the proof of Lemma 4 are independent of the point

y
~
, they may be at~plied here for y~ , 

and we have 1 < c20 (e k÷l 
-. 

~~~ ~~~~~~~~~~~~~~~~ 

-

implying c-k+i 
— ek 

> = ~2” > 0.
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LEMMA 6. An augmented exchange can occur only a f in i te  number of t imes.

Proof: Assume the contrary . Then , by extracting subsequences (as often as

• k k
necessary ) we obtain a sequence CYk 

} of extreme points {x 0~’ ..., x } suchn f l

that the exchange from to Xk +1 is an aug aented exchange , so that Xk +1
£ 9. 9.

k k 9.
= 

~ k U {y0
2} where y is a g—pole for rk 

and is selected so that

= min (pk (y): yE x} < C; r~ is the best approximation to f on

— 
- 

= {x ~ X: pk (x )  > c} from R~
(Z k ) so that no multiple exchange is apolic-d

to 
~k • Letting y 0~ be defined as before , ~ = 

~~k 
- 

~k +1’ we assume that the
9. 9. 2.

final subsequence 
~
‘
~k ~ for k = 1, 2, ... satisfies

2.

- k 9. 
_______(1) 

~e 
(y~ ) > (1 + c) (Lemma 5).

• 9.

- Ic9. k9 k k
(2 )  sgn[f(~ 1 ) — rk(~ l

’)] � sgn[f(~~.
9.) - r

k,+l
(
~~
.9.)] for some i, 0 < i < a,

• ~ 1<9. k
in depenc1ent of k 9., where Xk + l  = 

~
‘
k
9.
+l 

- {y } = {y
0 , ..., y~ ) (Lemma 4 ) .

k9.(3) y
8 

+y~~~~Xas k
9.

-~-~~ 
-

(4 )  
• 

X~ = {y~ , ..., y~} c X (coordinatewise convergence) wi th

y~ - y~ > 6 > 0, 0 < j < n ( Lemma 1).— —

~ p~ 6 fl~ uniformly on X (Lemma 2).

1

K9. k 9.(6)  sgn[ f(y .  ) - rk 
(~~ )] is constant for fixed j ,  independent of K 9..]

As noted above , all of these conditions can be met by passing to a ’ibse~~sc-n c~ a cf

sii~~~~i’en:La sufficiently often. Now , under ‘h”se conditions , we claim there

(

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ i~I~JL - - 

- T
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exists a p > 0 , independent of k 9, , su ch that

K9, -If(y
~ 

) — r~ ~
YI~ 

)j  
~ 

ek + p (2.1)
K
9. 

9. -

where r
~ 

is defined for e ‘ A < e}~ as before:
- 

k9,

k 9,
• R,,

(y.  ) = f (y .  ) — f l . A , 0 < j < n

with n~ sgn[f(~~~Z) - r~~ 1( 9, )] . Indeed , if (2 .1)  is not true , the n there

exists a subsequence ( r elabelled) such tha t

k 9. — k9.) - r (~ r~ ) 1 .~. 
e

)< + i— . (2 .2 )
9. £

Define q ~ fl~ by

k -1 - K
q(y~~) = u r n  ( f (~~.9. ) — fl.ek 

) = u r n  
~e 

~~~~~~~~~ 0 < j < n. (2.3)
~~~~~ . 3 k.~~ k

k k 9.Note that if —1 , then f(~~.
9.) - 

~
.e
k > f(-~ . 

) > min{f(x): x c~ X} m > 0 ,

k . k k
and if = 1, then f(~~

2.) — ~~e1< ~_ f(y
1
2.) — ek +1 = D

k ~1
(y~

9,) >~~~~~~~ > 0.
9. 

- 9, 2~
Thus , the above 2• irnit exists for each j and q(x) > 0 on X~~. ~~~~ t~~i~ it

C follows that p converges un i fo rmly  to q on X. Furthermore , q( y~~) > -

~

-

~ ~~

H by (1) and by (2.3) (f(Yi) - q(~ :)I = e~ - Thus , for K9. 
sufficiently large ,

say k9. > K , so that q(y ) > 0 we have

tf(y~
) - 

~-~~-yI < f ( y ~~) - f (y~~) I  + f (y ~
9’) - 

ek 
(y
~~

)i

— k 1 1
+ ek 

Y.~ 
) 

q(y 8
9.)

I 1
q(y~ 9.

) 

- q(y ~•)
1 ~ c~ as -

~~~~~~ ~~~~.

Now , since p. (y. ) > ~ for all j and k 9 and 
~k (v~ ) > C for all k~ , we h~ivo

that p~ (y~:) > c ~~r :11 ~ arid p
a(y~ ) > c. Furt ess~ i’. - , f - -

~~~ alt. e - -~t cr

~~~~~:~~~~~ _ T I ~~~~~~~T
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1 — k
X~ U (y~ } with  deviation e;’: since f - — alternates  on ~~ U {y u i t h

L
deviation ek . Thus , by Lemm-a 2, — = —

~~~~. But this is impossible since ~sr
9. 

q p

k9. 
sufficiently large (i the index of (2))

k
sgn[f(y :~)~~ pay ) ] = s gnt f ( y . 9.) — r

k
($
~
.
9,
)J

1 9,

-

—sgn[f(y
1 

) — rk ~1
(y 1 ~ = —sgn[f(yJ’) — 1’e (y . 9. )]

9, 1 k~ f]. ~

= _sgn[f(y~j:) — 

q(y :~)
1 ~

-

1

which is our’ desired contradiction . Thus , ( 2.1) holds . Since Ck ~ 
> e1< t &~ ,

H we have that e
1<~~ i 

- ek ~ 0. Choose k so that k9. 
> k implies ek + >

Then , we have, us ing (2.1 ) and the deter~ninant argument from the proof of Lemma 14 ,

p • k 9, - K9, k9. -

< ek + P - e1<~~1 .~~. 
If(y8 

) — r0 (y~ ) J — ~f(y ~ ) — r ( y
8 

)~

H — 
K9, k~,

• __________ 
i - ~~e 

(y
~3 

) — 

~e 
~~~~~~ ~

— 1~. 2. 
- 

— 
- 9,+l 9.

~‘e (3’s ~ ~e ~~~~~~ ~ — k9.

• 
k 9, k 9,+1 

~e 
‘~~‘~~ ~ ek +1~

’8 ~
• £ 9.

1 + e  

~~
ek+l 8 

- < 
~2i

(e~ +1 
- e

k
) .

Thus , e
k +1 

- e
k ~~~2

’ ~2 
~~~ But this is impossible , so we have tha t  ~~~

£ 9. 1

augmented exchange can occur only a f in i t e  number of t I a S O S .  I

We now turn our attention to the case tha t  the exchange from I to X isk

not an augmented exchange . In this case , rk i s not the be st sp~ r oximat~~~:i t o

0 k+i ~+j ,  • —f on Zk from R (Z
k

) and 
k+l 

{x
0 

, . . -, x~~ 1i with no ~—poi e ~ In

~~~i: _ _ _ _
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X, . Setting y = ri~~:i !f(x~~
1
) - r ( x ~~~~) f  and ~ = max If (x~~ 1-r (/

t~~~
),c+1 k+l O<i<:i+1 1 1 k+1 O<i~nt1 1 ~ i

we observe that 1k+l ~ 
and 

~k+l > ek+l .

LEMM A 7. Ther e ~xists a constant ~ > 0 ( independent of k )  such tha t  if Xkf . is

not obta in ed by an augnente~ excha nge then Ck+l 
- 1k+l ~~

- ~~~k+l 
- ek+l

) .

Proof: Let A be a parameter satisfying 
~ k+1 < ~ < e)~~i . Set r~

k+1 k -i-I i k+l k+1
= sgn[ f (x 0 

) — :~~(x 0 )] and note that ( — 1)  r~ = s gn [ f(x .  ) — rk (x i )] for

I = 0, 1, ..., n + 1. In addition , it is alweys true th.~t sgn [ f (x ~~
1) - rk (x

~~
’)]

sgn [f (x ~~
1) - r

k l
(x

~~
’)] . This fact follows from a zero counting argument since

both rk and r’k+l are positive on and both f - r~ and f - rk+l alternate in

sign on 
~k+i 

If ( — 1) ’~ = I , t hen we have that  f ( x~~
1) — (-1) ’nA = f ( x ~~~~) - A

> f (x ~~
1) - e

k+l rk÷l
(x

~~
’) > c~ > 0. On the other hand , if ( -I )~~ii -1~

we have that f(x~~
1) - (-1)1~~A f(x~~

1) + A > f(x~~~) > m  m i n {f (x ) : x~~ :) :-

In either case we have that

f (x ~~
1) - (-1)1r~A > 0 for 0 < i < n 1- 1, ~ < ~~~~

Define 
~A ~ fl by 

~A
(x
~~
1) = ( f (x ~~

1) - (_l)m
nA)

_l 
for i 0~ 1, ..., n + 1,

I ~ q, where q is the smallest subscr ipt , 0 < q < ii + 1, for wh ich

If(x~~~
) — rk (

~~~
1 ) I  8k+l Next , defin e 

~
‘A 

I and note that 
~ 

S r
k

since these two functions agree at n + 1 points  ( i . e . ,  x~~
1. i 0 , 1, . . ., ni- i , i~~e ) .

•1 1

Finally , observe ~h~ t ~x
(x
~~

1) is a continu-s’js function .~f A for 
~k+1 

~ A <

We shal l  prove that  t h e r -~ c-xist :;  an w , < 
~~k +I such th a t  ~~ (x ~~~~)

Pk
(x
q

). ‘~~ ct- a ~-L~ : w~• - ri~.t <S i t ’s  tvo c i : c - :

.4

~ 

~~~~~~~~~~~~~
-

~~~~~~~
-

~~~~~
-- •

~~~
-
. ~~~ :: 1L T L ~~T 

_ _ _ _ _
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•

Case 1: (_1)q~ = 1, i.e., san[f(x~~
1) - r

k+l
(x )]  1. Here

f (x ktl ) - rk ( x )  = and f ( x ~~
1) - r

1<÷1
(x~,~~) = e

k+l
. For I � q, we

have If (x~
i-’) - 

1k+l ’ 
1k+l ~~~ If(x~

i-1) - r
k

(x
I ) l ,  so that

(_ 1) ’n[r k (x
~~

1) - 
~ (x~~~)] < 0, and thus (_ l ) m n [p 1< (x~~

l ) - ~ (x~~
1) > 0.

1 ‘
~
‘kil

i / q. Now , if (- 1) rp k (x~~
l ) - ~ (x k~~ )> 0 holds, then by counting zerosq 1k+1 q

( includind mult iplicities of up to order 2) one has that p1< p , so t h a t

k÷l - k÷ 1
Pk (x q ) = c’~ (x q ) and one sets w = 

~k+1 in this case. If , on the other’
k+l

han d ( - l) [p 1<( x ~~~~) - ~ (x k
~~~) ] < 0 holds , then ~ (x ~~

1) >
q 

~k+l q 
~kt1 q q

k-i -i k+1 k+l k+ 1Since f ( X q 
) — rk (x q 

) 
~k+l > ek+l f ( X

q 
) - rk+l (x q ) we a lso have

that p1<
(x~~

1) > 

~k+1~~~~
’
~ 

= e1<~ 1
q so that by the Inte rm ed iat e Value

— k+l k+lTheor em there is an u~ t~ < e
~<.i-1 

such that 
~w~~q ~ = 

~k~~ q ~~•

Case 2: (-i)T 1 -1. This case follows with essentially the same argument

and we shall not give the details.

Thus , there exists an u, < w < e
k÷1 

such that ~~(x~
’
~~) = pk

(x~~
1).

Hence

k+l - ki- l k+l k+1 1 1

~~~~~~~~~~~~~~ 
)_ r

w
(x q )_ [f(X

q 

)_ r
e~~~ (x q ~~ 

(x~~
1 ) 

- 
- (k+l

)
. ek+l 

q

1 ki-l j
_
~~~k+l)

_ 
(x1<

~
1) 

~~[c~ 
— cj e  

] o> q )

Since i ( x ~~
1) ~~pk(x~~

1) and referring to the already ;t ~ bl~s:h e~

estimates of Lens~ 4, we have

• B
1 < 1  

- 
~~~~~~~~ < — - ~-- -~- f ~- ~ ~~~~~~~ ~~~~ “k+1 

-

C <q )I ~~~

- 4-• -~ ~~~~~
—

~~- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ • 
-- k i S ~~~ ._.rn -
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~ 
c~’(e~~1 

- 

~~~ ~~~°k+l 
-

where ~~‘ > 0 is independent of k .  Sett ing ~2 = ~~~~
- we have our desired r-e~;u t. t

Final ly ,  collecting all th e above results to complete the proof of Theorem 2,

we see that f ir st of all there exi sts a posit ive in teger k 0 su ch that for k >

no augmented exchanges occur. Thus, for all K > K
0 
we have that e

kfl 
-

~~
- 
~~~k+l 

- e
k+l
) = 

~~~k÷1 
- y

1<~ 1
) - ~l(e1<i-1 

— 

~k+l~ ’ 
by Lemma 7. Hence, for-

k a k0 , C
k+l ~k+i ~ ~(1 ÷ ~)~~~k+l 

- 

~k-i-l~ 
implying tha~ 

~k+2 
-

. ~k+l

~ ~~~~~~~~~~~~ ~k+l~~

Now we may apply the argument given in the continuous case ([2], p. gg),

noting that we have a Strong Uni quer is s Theorem ( [5 , Theorem 3]) , to show tb-it

there exists 0 E (0, 1) and A > 0 such that  if k > k
~ 

then

• K

completes the proof of Theorem 2. 

~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~ - _: 
~~~~~~~~~~~~~~~~~~~~~~~~~~~
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We now t~:rn to the :~c~psnd ob~ cat  ‘ic of this ~aj~ -r. liar-a our ~: n> : ~a~~t

family i~; t~ kcn  to be

R~(X )  (r = ~-: p II , q 
~ 

~~~ q > 0 on x ) ,

and require card (X) > m + n + 2 (m > 0, n > 0). g-poles are defina~ as L - a :o r e ,

i.e. ,  x C X is said to be a g-polo of r 2 if q(x) < c where c > 0.

This concept is useful even when X i~ finite ,

since it enables us to avo id division by very small positive ui~~.bt~- rs. We

have used e = 10 18 on a UNIVAC 1106, which baa roug hly lB-di git accuracy

double precision . Unfortunatoly , we can no 1o~gcr be sure that rk w i l  h-T h-PC].;

free on its reference set , alti:oia~h this condition can be enforc -~~ by in nc-~ 
• i:.g

additional constraints into the li~ c-ar pr-oar-ar’m~ n~ rt of the differential

correction alder ithn (we will retusu to this :o~.:~t i~ ter). The a]i~cr i t bn  c

used (with cai-d(X) = NUMGR < o.~) is describ~~ b ~:-e ~~~~~~~~ 1 and 2. 

~~~~~~~~~~~~~~~~~~~~~~ _ _ _ _ _ _ _ _

~~~~~

~.
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4. Co:. ,- - - ‘ -n~~ ef th e ~~ - - •  — f l  - -~~~~~~
. ‘ -  H

in tb L  s e ct i e l i  ~~-: ~socc th~.t ~~• t~~i - - 20—~ t -~ , -ir ~-~ -~~~ i~~ y~~ : - is

deleted fr~ ’- : the R-. ’- -~ 
- f l i~ cor f l  ~~~~~~~ , -_:..~ - r- certa :. ex~~~~c-e

assumetione t~~ c ~~l r -i J::i w i l l  l -~~ : .  ~t -  ~ t ::~ t ~~:-:in ._ t sn to f ~
‘ i - -e

R~ ( X ) .  
-

THEOREM 3. L-:t Y be a fir~ite ScO of (-~~l n-s: .~ •‘  -~~~ ~~i: a’:

r n i - n + 3 p o i n t s , and l-~t f t ~~C(X). H~;~ -m - .c i . ~~~ c_ sb sufl-set Y C X

conta in ing  e:•:ast ly :n + n ~ 2 or in + Ti + 3 no u :s , a best  asj roxie :iti-o :i

r = E R~ (Y) exists for f f ra~~~F~~( Y )  a n i , in ~dcilt on , th~ t a > c on Y.
q n Ti

• Then the Rcr c-s—Dif Ior aloonithm will tern~ :ate at a beat a~~ r--Lxi :: 3t:em to

f on X from Rm ( X ) .

Proof: Let be the initi~ l ref er e n n a  set en~ l’-t Xk he the ref e r - a r c e  pet

at the k-tb stage . Let rk be the best apprcni: aticu ~ to I on with
-

, 

ek = max~~f f ( x )  — Ck
(X )f : xE  

~
<k .  If the as~~-ritha t e rm in a t e s  at st-age ~~,

then there are no g—~ oies and the m ax im um error occurs in Xk; thus ,

ek 
— rj~ and r, is th.e host ajm r o x im a t i o n  to f rj ~~ X from ~~~(>i).

Now suppose the al.~orithm does :100 tar:n±nao’:’ at the  k — t n  s o i ~’a (~ > 1) .

If rk l  has g—poles in X , then at least one of -~ha~~c is included in X k by

co:”- t ru- -:t~ c-:. , so tn -it r
k ~ 

r, 1 . Also, if rk .  has no g--poles in X , t h en

rk t rkii ; since otherwise the max in: u m error fc-r r , in X would occur at  same

point , as the max im um error for r k l ,  and thus would hr included in Th i s

:: wouJ .d contradict  th e  fact  that the algorithm dc-es not tcri:i.nat-e 20 tho  k - L I  ;t a g e .

Now f - rk l  must alternate on some set (x
1, 

x
2
, ..., X

i + ? d 

) C X~~~.

N where dk l  is the defect  of r1 < 1~ and so by construction f - r
1 < 1  

fl U~~~~ ~lt l i i . ,

in si~ n on some sot 
~~~~~ 

X~~~, •
~~~

•
~~ 
‘e~ n+ a_ d~~1~ 

C >‘~ w i th  I f (~:~
) - r, , (n )  • ‘ , 

-

-i

44 

~~ L1~::: . .~~~T -

~~~~~~~~~ 
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1 1, 2 , . . . ,  in + n + 2 — d . So by Lees- i 2 x i -  h ive e = m~ x f f ( x )  —

k— i  X C X 1< 
- .

> nax~f(x! 
- s~ (x~ ) j  > n i n l f ( x ! )  - r1 < 1

(x !  I e
1 < 1

. Thare’~ a-e , {“ ~ , }  in 

increes~ .0 since there are eu ly  a f im i t a  n iet. -~•r of p~~~~Jb l ’t  r c - f c i - e n - e a p e t n

containc - X the algorithm :i~ust terminate. I

a’
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5. F . x a e ; ’ l i ;  and C - n c ~~un ~ m . s

In or-~fl--r to ~ct ~ t L T - .~ Co n f l a i n s - T i  of the iLeeicp— 7)i -~nr- a d o r - i ’ i 1 se u H o  th~

ordinary d i f  : r e nt i~ l cossea t i c  x a l go r i thm ale-n a , w~.- r an  the  fe l l n w !r , e  ai lt

f i l ter  desi n p r o b l e m :

1, O < x < O . 2 i r
Let X = [0 , 0 . 2 w ]  U [O. i~ T , i i],  f ( x )  =

10.0123 , 0.14ir < x <

We approximate from R~(X) = {
~~~

-
~
-
~~

-
~
- (a~ + a,con x + ... + a9ccs 9 x ) / ( b

0 
+ b~ cc~ X

+ h2cos 2x) : q > 0 on X } . We also want q > 0 on [0 , ~r] and > 0 on [0, ~r i ,

but in this exams!— i t  is not necessary  to do an y t h i n g  extra to  fcr-co -

Although wo are r .ot us ing  ordinary a lgebr aic  rat ional  func t i ons , we do be--.e

the a l tt ~rn~~t i n g  th sry in th i s  situation , and that is a l l  that  is r-c ’guiocd .

To run th is  axes: le we replaced X with an equa ‘Jy—spaced mesh (sensing m-~e)

conta ining 2 D~ p r i n t s .  Using as our initial reference set five (r-o-agbi-;)

equally spac- d poin ts  in [0 , 0 . 2° ]  and e i g h t  (r ou gh ly )  equally a acc-d pc.i:;t:

in [0. 4 : , 11], we ob ta ined  convergence a f te r  four ’ exchanges and 60 .0  a c s s m d s :

II~ — r~ 1 was 1.83914 x (who-i c r~ is b’?sn). (Note: the final alOe: ne ting

set does have five moints in [0, 0.271] and el1L t p51505 in [O.t~n , i i 3 ,  b u t  th ey

are not equally s~ c-~ed .  ) Start ing  w i t h  eight  ~-Ljeal1y s:-a r- c-d p o i n t s  in [C , C.2°]

and five in f 0.4T1 , ~], eight exchunt~-:- a and 1 m:Lnute 11.7 seconds we-re rc -e~rilr~~d;

sta r t i ng  w i t h  all :ef ~’rance moist :  pu shed to the extreme right of [O. t1~~, ~]

-‘ (which is crc  of the wsrs o possohi e stastirig ri ference sets), fift c-on ‘e:~ g .-eneea

and 2 m~ nu t eS  0 . 5  S e C O S dS  were required. On the other hand , runn i ng th~ n

pr ob l em w i t h  d i f fe r e nt i a l  cor s-ectic- Ti a l on e  requ i red  S n i : i u t - ss ~ : .5 necen H. One

would exoect  the  t Pro ~l i f f cr e r ~c a to inn :  ‘ e~~n .c ii a f i n er  mesh w~:- :-•~ used.

We also ran the -a~ hi Peer r-o Tr~~i on a n~~ n.1,:::-i i: fL S ;u: i ch h o - s t  pro> : is t - a

d i d  r.e~ c x i  t :--sn e s~ f -r - :-nco sets , a~~’ hars h a bc :it a :ni-c .xh- t in : .  dI . slut

cr, X .  L~ i - c  C - P V - : ’ nIc e d - : . -: n d - - d  an ho c h o i c e  ef i n i t i a l  s’ef::o-ncc s:L

Lc—4
F

&~~T1 1 ;~~~~~~
-

~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - -  ~~~~
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• although we wore able to oht n convc -rgnrn ’ e - - . - n w oh ~ i . ~ ~ni’ • ‘ • ‘~

- 
- set if we I t he l ~.ed the  pr’s-gsa!:: ov er th~ Li ~ :‘oa~ C” fly :~~ 

- ‘ > C.- : ,  ‘n.

reference set;  th is  (as epsose-J to fcr-cis~’ ~ 
> -c c-n all of ~

) di-: ‘ 

much additional work .

In general , t h e  r e l a t i v e  n i -si t s  of Fe- : -::, : e e  - 3  If -n: - , a:.s -hf -er I

finite X can be rummsr i , :eJ  as f o l low s . ‘~1hen 1< :.. -. - - war ~ ;, so dcc- —d i

• and with  ccm: aral le sec-ad . Remo -s—difce.r- w i l l  ~c~ al  ~: :: ‘ I l l  •-~ :-h W 5 - Ti H:

fails due to prol iens in f i nd ing  a new a nt  :-nx i  n t i e - ; .  or: -: - :“:n: e -‘ ct ,

is inuch faster than difcor if card (X) is 1ar~~e. L~~fccr i. tn o:’ -- t i ,

more robust than Remes—difeor since it do-:: : u~ s-a -aire an alt- ~tin tb - -C-i ,~~,

and h f  - rk f j  w ill converge to luf h f — r h  even if t h a n  H no : - - s

-: ‘ approximat ion , but  round-off  and storage peobl n - s  r’. r, b- .- p r - o L H i o I . ’ - H

car d ( X )  is too large.

4.

-Y

I 
________________ _______ ____
_ _ _ _ _ _ _ _ _  —
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F - - .~~~.
- - i fee:’ flow -h :r t ~l (e>:cl :di:- g i:~~- u t — c u t g u r  ). For a fixe d nr::.boi’

u;~
; . .  ) a: .

STAP’I

• _ _ _ _

P rr~f 
r : f ~~~ - ~~~ ~ Z~~ - f . ° :J1
_-

~~~~~~~~~

_

nix :;.: - - :  r -n c i : -_ 
-- _

• 
~~~~~~the~~~~~~~~~~~~~:s7

Jes

~~~~~ve , C en~ nJflgCC ~ / uce. : flax. - a : or
- l been p~~r~L c : ’ ~ i ~~~~ occur in te~

~~~~~~ ~~~~~~~~yes 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~

/ ~~~~

f~~set 1 [
~~

D
~~~I H

( s~O~~ )

P1~

1- 

_ _ _ _ _ _ _ _ _ _ _ _  

______ 
~~~~~~~~~~~~~~~~~~~~~~
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Flowch-art ~‘2 .  F inding a N o - .4 R e f e r e n c e  Set (N ii + in + 2 , NU~-~hJ- r:urbc:- o~
grid I o i . n t : )

rReduce the  old reic-i - -:-nne ‘a t  T ~o a m~ x i m :i sub _ t

• 
on whi ch the error fas:ti:— n alIt-c-ri -ir a; in oHs

________
‘

~~~~

— _
~
_

~~~~~s
_
T~ have fower than 2 n o ~~~~s?

Shif t all ~~0~~~5t5~~~~ T1 
_______________ 

~~no
T 10 spaces right 

nmodu lo NUt ~ ~~~ Does T have ~ + 1 poin ts?

I 

- 

_ _

yes

r Return
• 

~~~~th_reference sets) Drop one point of T, , pr-~~~a:-~’i::~
• maximal non 1 -a:: c-c s lt - :cr, ct  ion

• 
. (sign and absolu te val ue )

Let T = t1, . . . ,  t~ , t0 = left—noel grid ro rt t , t~~ 1 
ri ght- :conc g:i: no .

for i 1, . . . ,  M replace (rc-curoiveL’) t .  by the grid p o in t  h - : . w’ ’ -: :

- - t. at which the errcr has ::.a:-:imu;n ebso! ition ~~~~~~ asi the s-an. c- S go
i+l

as ~~~ cons ider ing  on ly  n o i n c s w h i c h  are not ‘-roles

no —Ci~r t ~ _2 ~~~~~~~~~ ~ ~

-

~~ ~~~~~~~~~~~~~~~ ~ 
-~~~~~ .: 

- 

L~ I~~Ei
i : th a~~

- . 
si n- -ic ~ i.ri0 i : x C ! n-. , . ( i f  -

~ < ~and t1 _ i 1

- p Fill i r ,  T W J  0.: 0!. ., — - . r- -

d i
~1 / ~~~~~~

1
~~~~~~~

1

i~~~~~~

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

-~~~--~~~~~ - -_- 
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